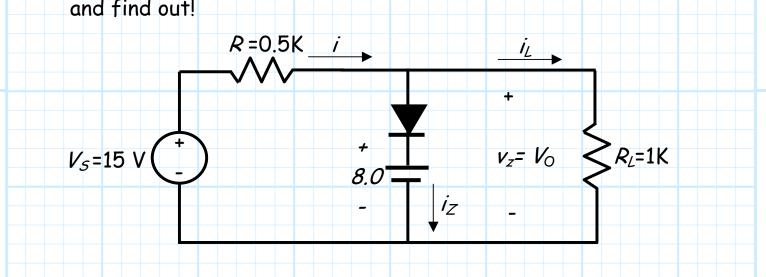
<u>Example: Zener Diode</u> <u>Circuit Analysis</u>

 \dot{I}_{L}

+

Consider the circuit below:


V_{ZK}=8.0V $v_z = V_0 \langle R_L = 1K \rangle$ *Vs*=15 V i_z

Note that the load resistor R_L is in **parallel** with the Zener diode, so that the voltage V_O across this load resistor is **equal** to the Zener diode voltage v_Z .

Q: So just what is the value of voltage V_{O} ?

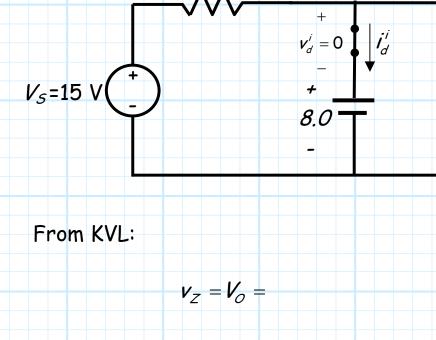
R=0.5K_i

A: Let's replace the Zener diode with a Zener CVD model and find out!

A: Yes! We analyze it **precisely** like we did in section 3.1 remember, there are **no** Zener diodes in the circuit above!

ASSUME: IDEAL diode is forward biased.


i


1

 $v_z = V_0$

 $\leq R_{L}=1K$

ENFORCE: $v_d^i = 0$

R =0.5K

From KCL:

where from Ohm's Law:

i =

1 =

